Intracellular disassembly and localization of a new P123-PEI-R13/DNA complex.
نویسندگان
چکیده
The appropriate location and release of target gene is necessary for gene therapy. In our previous paper, a gene vector named P123-PEI-R13 has been successfully synthesized, and the physical characteristics and cellular trafficking of nanoparticle P123-PEI-R13/DNA has been explored explicitly, but little was known about its disassembly within cells. In order to investigate its intracellular disassembly, P123-PEI-R13/DNA complex was exposed to the different competitors (RNA, DNA, proteins) or different conditions of pH and osmolarity, DNA release was determined by gel electrophoresis. Meanwhile, confocal laser technology was used to locate the complex in cells. The results revealed that DNA, RNA and osmolarity could affect the stability of the complex obviously, especially RNA which exist in nucleus. In addition, the speed of DNA release decreased as the weight ratio of polymer increased. Images got by a confocal fluorescence microscope confirmed that after cell uptake, P123-PEI-R13 could translocate DNA into nucleus.
منابع مشابه
Degradable polyethylenimine derivate coupled to a bifunctional peptide R13 as a new gene-delivery vector
BACKGROUND To solve the efficiency versus cytotoxicity and tumor-targeting problems of polyethylenimine (PEI) used as a nonviral gene delivery vector, a degradable PEI derivate coupled to a bifunctional peptide R13 was developed. METHODS First, we synthesized a degradable PEI derivate by crosslinking low-molecular-weight PEI with pluronic P123, then used tumor-targeting peptide arginine-glyci...
متن کاملLow-Molecular Weight Polyethylenimine Modified with Pluronic 123 and RGD- or Chimeric RGD-NLS Peptide: Characteristics and Transfection Efficacy of Their Complexes with Plasmid DNA.
To solve the problem of transfection efficiency vs. cytotoxicity and tumor-targeting ability when polyethylenimine (PEI) was used as a nonviral gene delivery vector, new degradable PEI polymers were synthesized via cross-linking low-molecular-weight PEI with Pluronic P123 and then further coupled with a targeting peptide R4 (RGD) and a bifunctional R11 (RGD-NLS), which were termed as P123-PEI-R...
متن کاملCoupling of a bifunctional peptide R13 to OTMCS-PEI copolymer as a gene vector increases transfection efficiency and tumor targeting
BACKGROUND A degradable polyethylenimine (PEI) derivative coupled to a bifunctional peptide R13 was developed to solve the transfection efficiency versus cytotoxicity and tumor-targeting problems of PEI when used as a gene vector. METHODS We crossed-linked low molecular weight PEI with N-octyl-N-quaternary chitosan (OTMCS) to synthesize a degradable PEI derivative (OTMCS-PEI), and then used a...
متن کاملPolyethylenimine derivate conjugated with RGD-TAT-NLS as a novel gene vector.
To solve the contradiction between the cell toxicity and transfection efficiency of polyethylenimine (PEI) derivate in non-viral gene therapy, a novel gene vector, P123-PEI-R18 was synthesized by using biodegradable PEI derivate conjugated with trifunctional peptide RGD-TAT-NLS. The particle size of P123-PEI-R18/DNA was around 100-250 nm. The gene vector could condense DNA at the weight ratio o...
متن کاملPreparation and Characterization of PLA-PEG-PLA/PEI/DNA Nanoparticles for Improvement of Transfection Efficiency and Controlled Release of DNA in Gene Delivery Systems
Tri-block poly (lactide) poly(ethylene glycol) poly(lactide) (PLA–PEG–PLA) copolymers are among the most attractive nano-carriers for gene delivery into mammalian cells, due to their biocompatibility and biodegradability properties. However, the low efficiency of the gene delivery by these copolymers is an obstacle to gene therapy. Here, we have investigated nanoparticles formulated using the p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Bio-medical materials and engineering
دوره 24 6 شماره
صفحات -
تاریخ انتشار 2014